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Abstract

Appropriate data distribution has been found to be critical for obtaining good per-

formance on Distributed Memory Multicomputers like the CM-5, Intel Paragon and

IBM SP-1. It has also been found that some programs need to change their distri-

butions during execution for better performance (redistribution). This work focuses

on automatically generating efficient routines for redistribution. We present a new

mathematical representation for regular distributions called PITFALLS and then dis-

cuss algorithms for redistribution based on this representation. One of the significant

contributions of this work is being able to handle arbitrary source and target processor

sets while performing redistribution. Another important contribution is the ability

to handle an arbitrary number of dimensions for the array involved in the redistri-

bution in a scalable manner. Our implementation of these techniques is based on an

MPI-like communication library. The results presented show the low overheads for our

redistribution algorithm as compared to naive runtime methods.

*This research was supported in part by the Office of Naval Research under Contract N00014-91J-1096,
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1 Introduction

1.1 Motivation for Data Redistribution

Distributed Memory Multicomputers such as the Intel Paragon, IBM SP-1 and the Connec-

tion Machine CM-5 offer significant advantages over shared memory multiprocessors in terms

of cost and scalability. Unfortunately, to extract all that computational power from these

machines, users have to write efficient software for them, which is an extremely laborious

process. The PARADIGM compiler project at the University of Illinois is aimed at automat-

ically generating a parallel FORTRAN program for any Distributed Memory Multicomputer

given an input FORTRAN77 program. The fully implemented PARADIGM compiler will

automatically:

• Determine a good data partitioning scheme for the input program [1, 2, :3, 4]

• Use the data partition determined (or user provided data distribution directives) to

partition computation between the processors of the system and generate the required

communication routines [5, 6, 7]

• Detect available functional and data parallelism and use this information to make

program execution efficient [8, 9]

• Provide compiler and runtime support for irregular computations [10]

One of the major aspects of programming/compiling for Distributed Memory Multi-

computers has been data distribution. A good distribution of data can eliminate a lot of

unnecessary communication and thus provide good speedups. There have been many efforts

on developing automatic data partitioning techniques [1, 3, 11, 12, 13]. In addition, user pro-

vided constructs have been proposed in some form or the other in every FORTRAN dialect

for Multicomputers including FORTRAN D and HPF [14, 15]. Recently, the HPF standard

has been widely adopted in industry and academia for specifying data distributions. HPF

also provides directives for data redistribution dynamically during program execution. In

this work, we will consider only "regular" distributions along each array dimension, i.e., one

of- ALL, BLOCK, CYCLIC or BLOCKCYCLIC(x). What we mean 1)3, these terms is

made clearer in Figure 1. Considering only these distributions is reasonable because a large

number of scientific programs have been found to use such distributions.

In many programs, the distribution of an array needs to be changed for different phases of

a program in order to achieve good performance. For inst.ance, a 2D FFT routine comprises
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Figure 1: Examples of Regular Distributions
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a sequence of two 1D FFT operations on the input matrix. First, 1D FFTs are computed

along each row, this is followed by a 1D FFTs being computed along each column. The best

distribution for the first phase would be BLOCK or CYCLIC along the row dimension. On

the other hand, the second phase would be best performed using a BLOCK or C3"CL[C

distribution along the column dimension. It must be noted that these distributions would

result in zero communication within each phase but require a redistribution between phases.

This redistribution can be avoided by distributing the array along both dimensions, however,

this will cause considerable communication within each phase. The work in [1:3] shows that

the performance of a 2D FFT on an 1PSC/860 is best when redistribution is used.

Redistribution of data is very critical for Multiple Program Multiple Data (MPMD)

programming. In such programs different subsystems of a given processor system execute

different parts of a program. This is in contrast to the popular Single Program Multiple Data

type of programs where essentially all processors are executing the same program, but on

different data sets. MPMD programs can potentially execute faster than SPMD programs

by making the execution more efficient. Frequently, data dependence constraints in MPMD

programs require arrays be redistributed from one subsystem to another. Figure 2 shows

this clearly. Here, array A is being written into by the first set of processors and being

read by the second set of processors. The PARADIGM compiler effort is among the first to

consider the problem of automatic MPMD program generation. This has been one of the

2
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Figure 2: Need for Redistribution in MPMD Programs

primary motivations for the work presented in this paper. More details on MPMD programs

can be found in [8, 9, 16, 17, 18, 19].

1.2 The Data Redistribution Problem

Having motivated the need for redistribution, we can now formally define a redistribution R

to be the set of routines that - given an n-dimensional array A on a set of source processors Ps

with source distribution Ds, transfer all the elements of the array to a set of target processors

Pt with a target distribution Dr. In the general case, D_ and Dt can specify arbitrary data

distributions along each dimension of the array. However, as mentioned before, we only

handle regular distributions at this point. Therefore, a redistribution routine needs to figure

out exactly what data needs to be sent(received) by each source(target) processor. It is

possible to use a simple runtime resolution approach for redistribution. In this approach,

each source processor computes the index of each of the elements it owns based on the

source distribution; uses this index to compute the target processor for it based on the

target distribution and packs it into a buffer meant for that processor; sends the contents

of its buffers to the target processors. The target processors essentially do the reverse.

However, as we shall see later, this approach is very costly compared to a method like ours

which makes use of the distribution information in a more intelligent manner.

The important features of our redistribution method are:

• Redistribution routines are to be automatically generated at compile time. This work

will be part of the PARADIGM compiler support for MPMD program generation.

• The source and target processor sets can be any arbitrary subset of the given processor



system. The motivation for this comes from MPMD programs. For such programs

we must be able to handle a redistribution for example, from processors 0, 3, [, 6 to

processors 1,2. We use ideas similar to those used in MPI [20] to handle arbitrary

processor sets.

@ Arrays being redistributed can have any of the possible regular distributions on the

source and target processor sets. Note that one of the most general case of redistribu-

tion is BLOCKCYCLIC(m) to BLOCKCYCLIC(n), where m and n are relatively

prime. We handle all the types of distributions in an uniform manner.

• Arrays being redistributed can have an arbitrary number of dimensions. The complex-

ity of our algorithms scales linearly with an increase in the number of dimensions.

We handle multiple arrays being redistributed at the same time using message aggre-

gation [.5, 6, 14]. This means we have just one send-recv between a pair of processors

even if there is data from more than one array being communicated between them.

Our redistribution techniques rely on a mathematical representation for regular distri-

butions which we call PITFALLS (Processor Index Tagged FAmiLy of Line Segments). Al-

though many representations exist for regular data distributions on distributed memory

machines [14, 21, 22, 6], we felt the need for a new representation for our work because

none of the previous representations satisfied our requirements. A primary requirement for

us was to be able to mathematically represent a regular distribution on any given subset of

processors of the given system and not on the entire system as all the current representations

do. In addition, we needed to be able to perform redistribution communication analysis ef-

ficiently. We therefore developed the PITFALLS representation along with a redistribution

algorithm based on it. This is discussed in the next section. We have also included a brief

explanation of our implementation and provided the results of a comparison of our method

with a runtime resolution type of method in Section 3. Finally, we discuss the implications

of our work and future extensions.

1.3 Related Work

It is possible for one to argue that redistribution can be performed using multicomputer

compiler techniques such as those outlined in [5, 6, 23, 14, 21, 22]. These techniques gen-

erate the communication required for any program statement to execute correctly given the

distributions of the arrays involved in the statement. One could now use a statement of the

4



form B = ,4 whereB is distributed accordingto the target,distribution and A is distributed

accordingto the sourcedistribution. However,it is not clear that any of the currently im-

plementedcompilershaveefficient techniquesto handleall the regulardistributions possible
for A and B. Another major obstacle in trying to usecurrent compiler techniquesis that

they cannot handle the given statement if A and B are distributed on a distinct (possibly

overlapping) set of processors.On the other hand, the possibility of handling arbitrary pro-

gram statementsusingtechniquessimilar to the onesusedin this work arebeing considered
for the PARADIGM compiler. The reasonfor this is the simplicity and practicality of our

techniques(the algorithms givenin this paper haveall beenimplemented).
The work by Agarwal et. al. [24] provides runtime support for redistributions. They

construct schedulesfor redistribution at runtime and reuseschedulesif a particular redistri-

bution pattern occurs more than once. However,this work neither handles the C]CLIC

or BLOCKCYCLIC type of distributions nor does it consider arbitrary source and target

processor sets.

Recent work by Thakur et. al. [:25] considers redistributions of regular arrays in detail.

This work is implemented in the form of a library for a HPF compiler. The methods proposed

treat possible source-target distributions in a pairwise manner. Their general approach

is to use a runtime resolution approach such as the one described before; although, for

specific cases of source-target data distributions, they use efficient methods. For the multi-

dimensional case, [25] propose a solution which is very expensive; such redistributions

are considered to be composed of a series of one-dimensional redistributions. Figure 3

illustrates the difference of their approach from ours. In this example, the basic problem is

the redistribution of a two-dimensional array A from (BLOCK, ALL) to (ALL, BLOCK).

The approach of [25] would be to carry it out as a set of two redistributions - first, from

(BLOCK, ALL) to (ALL, ALL) and then, from (ALL, ALL) to (ALL, BLOCK). On the

other hand, our approach would be to directly go from (BLOCK, ALL) to (ALL, BLOCK)

as shown.

2 The PITFALLS Representation and Redistribution

Broadly, to perform a redistribution, for any source-target processor pair, one has to look at

the set of elements owned by the source processor before redistribution (based on the source

distribution) and the set of elements owned by the target processor after redistribution

(based on the target distribution). The intersection of these sets is the data that needs to be
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Figure 3: Need for Redistribution in MPMD Programs

transferred between the pair of source-target processors. The PITFALLS representation is

particularly useful in this context as it can be used to easily determine the two things most

important for redistribution - which pairs of source-target processors need to communicate

and the intersection of the data sets of such a pair of source-target processors.

For simplicity, we first develop the ISITFALLS representation for regular distributions of

a one-dimensional array in a set by step manner. We will later extend our ideas to multiple

dimensions.

2.1 Line Segments (LS)

Consider a one-dimensional array A of size n. Fundamental to the PITFALLS representation

is the idea of using Line Segments (LS) to represent a contiguous block of elements. An LS

L can be represented by a pair of numbers (l,r). For our representation, this LS (in the

context of array A) is taken to mean the block of elements of A with indices starting at

I and ending at r (numbering r - l + 1). We call the quantity I as the LOW of L; i.e.,

I = LOW(L). Similarly, r is called the HIGH of L (r = H[GH(L)). Note that a single

element with index l has the LS representation (I, l).

Since our primary interest is in being able to find intersections for sets of elements, we

see that the intersection of two LS's L1 = (l_, r'_) and L2 = (12, r2) (denoted by LIL, OLd) is

given by:

6
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{ (max(ll,I_),min(rl,r2)) ifmaz(Ii,12)<_ rnin(rl, r2)LIL, fqL_ = 0 otherwise

2.2 FAmiLy of Line Segments (FALLS)

The LS notion can be extended to what we call a FAmiLy of Line Segments (FALLS). A

FALLS F can be represented by a tuple (I, r, str, hum). Intuitively, F represents a set of

hum equally spaced, equally sized blocks of elements; the first block starts at I and ends at

r; the stride between successive l's is str. Note that these are non-overlapping blocks. The

ith (0 < i < nurn - 1) LS of F (denoted by L i and called the ith member) is given by:

L i = (l + i × str, r + i ×str)

Figure 4 shows a few examples of FALLS.

Using the notion of FALLS, it is possible to represent the set of elements of A owned by

a particular processor under any regular distribution. Figure 5 shows the FALLS represen-

tation for elements owned by processor 1 in a 4-processor system for various distributions of

A when n = 32. In this example, it turns out that in every case, processor l's elements can

be represented using a single FALLS. This may not be true in the general case, where, more

than one FALLS may be needed. However, it is easy to show that no more than two FALLS

are needed for any regular distribution. In Figure 6, we show an example of processor 2

needing two FALLS when a array of size 32 is distributed using BLOCNC}"L[C(3).

Once again, in the context of redistribution, computing the intersection of two FALLS is

of interest to us. Given two FALLS F_ = (ll, rl, strl, numl) and F2 = (12, r_, sir.2, hum2), a
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Figure 6: Examples of Distribution Requiring Multiple FALLS

simple brute force algorithm to compute the intersection (Fir, NF2) is shown in Figure 7.

This brute force approach just considers every possible pair of members from the two FALLS

and applies t,he LS intersection algorithm to them. We can see that this technique can be

very inefficient by considering the example of FALLS intersection shown in Figure 8. In this

example, there are just 4 non-empty intersections whereas our brute force algorithm would

perform 16 iterations.

There are a couple of important observations to make in our example of Figure 8.

FIF, NF _ = 0

for il = 0, nurnl - 1

L1 = (ll + il x strl,rl + il x strl)

for i2 = 0, nurn2 - I

L2 = (I2 + i2 x str2, r2 + i2 x str2)

FIF_ AF _ _w. FIF, f.iF _ U LIE, N L_

Figure 7: Brute Force FALLS Intersection Algorithm
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Figure 8: Example of FALLS Intersection

One of them is that the intersecting pairs of members of the two FALLS (circled in the

figure) have the same relationship between them; i.e., their relative displacement is the

same. This gives rise to the idea of periodicity in the relationships between members of

the two FALLS. The length of the intersection period (FPFI n F_) for a given pair of FALLS

F1 = (/1, rl, strl, nurnl) and F2 = (12, r2, str2, nurn2) can be written down as:

_ also find it convenient to define a pair of quantities called m,, and m.2 as follows:

7711 -- sir1

F%nr_
D'Z 2 -- sirs

Intuitively, these quantities represent the number of members of each FALLS occurring in a

period. It can easily be verified that a pair of members from the two FALLS (il, i2) will have

the same relative displacement as the pair of members (il + ml, i2 + rn2). For the example

of Figure 8, FP& i--IF_ = 8, rnl = l, and rn2 = I.

Another observation to make in Figure 8 is that the intersection of the two FALLS in

this case turns out to be a FALLS (as noted in the figure). These observations imply that

we need only look at possible intersections between pairs of members of the two FALLS that

occur within a period and extend any intersection that may result to all other periods (thus

giving rise to a FALLS structure). This gives us a more efficient intersection computation

algorithm shown in Figure 9. For the algorithm, (I1, [2) is the first pair of members of the

two FALLS that intersect; all other terms have the same meaning as explained above. If we

use this algorithm for the example of Figure 8, we see that (It = 0,/2 = 0) is the first pair of



F IF, f'lY_ =

for i,=Ii,Ii+m,-I

L, = (I1 + il × strl,rl + il x strl)

for i2 = 12, 12 + m2 - 1

L2 = (12 + i2 x str2, r2 + i2 x str2)

if (LIL1RL 2 ¢ _)

t= LOW(.LIL, L )

= FPr,
hum = min(["um_]q-'], ['*_'m_m_i_-lJ )4-1

FIr, = e[an  

Figure 9: FALLS Intersection Algorithm Based on Periods
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Figure 10: Another Example of FALLS Intersection

members of the two families that intersect. As seen earlier, m 1 = m2 = 1 and FPF, 0 F2 = 8.

This means our algorithm will iterate just once with L1 = (0, 3) and L_ = (2, :3) which gives

us a non-empty intersection LIL, f'IL _ = (2,3) making l = 2 and r = 3. Using the value

8 for FPF_ fqY2 gives us str = 8. Finally, num can be calculated as 4, which gives us the

intersection FALLS as FIF, ('1F= = (2, 3, 8, 4).

In the example just considered, we had only one resultant FALLS. This may not be the

case in general. The maximum number of FALLS that can be produced using this algorithm

can be shown to be rnt + rn2. However, this is not of much concern since ml and rn2 are

very small in most situations.

Although the algorithm outlined above substantially cuts down on the number of itera-

10



tions performed as compared to the brute force algorithm described first, it. is still not verb'

efficient. This can be seen by considering the example of Figure 10. For this example,

rnl = 1 and rn2 = 4, which means our algorithm iterates 4 times. However, we see that the

intersection consists of just one FALLS, which means :3 of the iterations produce no FALLS

and are thus wasted. This gives us the possibility Of constructing another algorithm which

still looks at pairs of members within a period, but, does not consider pairs that do not

intersect. This pruning is done by considering the intersection of a pair of LS's L1 = (ll, rl)

and L2 = (12, r2). We see that this intersection is non-empty when max(ll, 12) _< min(rl, r2).

This can happen under one of four conditions as listed below:

12 ___ ll rl <_ 7"2

12 _< I1 ll _< r2 r2 _< rl

I1 < 12 r2 _< rl

I1<_12 12_<rl r,_<r2

Applying these conditions to determine when a pair of members (il, i2) of two FALLS

F, = (ll,rl,strl,nurnl) and F2 = (12, r2,str2, nurn2) will intersect gives us:

12 q- i2 × 8tr2 _ ll q- il x strl

l._ + i2 x 8tr2 < l, + i, x air,

li + i_ x .str, <_ 12+ i2 x ._tr2

I1 + il x ,strl <_ 12 q- i2 × str2

rl + il × strl < r2 q- i2 × str2

ll q- il x sir1 < r2 q- i2 x str2

r2 + i2 x str2 <_ rl q- il X .strl

I2 + i2 X str2 <_ rl q- i, X .strl

r2 + i2 x str2 <_ r,

rl -1-il X 8_'rl _ 1"2nt- i2 × .str2

By performing a more detailed analysis, we can reduce these conditions to the following:

i2>ix x _t-!ra-+£x-=zx
-- str 2 str_

i2 < i_ x _ +
-- 8tr2 .str2

The equations above give us a method to determine which members of the two FALLS will

actually intersect. It can be seen that given a member of the first FALLS we can use these

conditions to determine the lower and upper bounds of members of the other FALLS (i2s)

that will intersect with the given member. We can now construct an efficient intersection

algorithm as shown in Figure 11.

Note that we do not check for an empty LIc, FILa because we are guaranteed it is non-

empty by iterating over the loop bounds computed using the conditions listed above. For

our example of Figure 10, we can see that our algorithm will iterate only once and produce

the FALLS FI N f-I& = (2,3, 16,2).

As seen before, some regular distributions may result in a processor having a set of FALLS

representing its elements rather than just one FALLS. Intersection of a set of multiple FALLS
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FIF, Na = t7)

I, -- max(O,f'_-_l/ strl t )

for il = I1, min(I1 + ml - 1,nurnl - 1)

L1 = (11 + il x strl, ri + il x strl)

for i2 = max(O, [fixst"+i'-'2]),min( [qxst_'+''-12lst,2I k st,_ j , rn2 - 1, nurn2 - 1)

L2 = (12 + i2 x str2,r2 + i2 × str2)

l= LOW(LIc, NL_)
r= HIGH(LIL, f_L_)

str = FPF, ffly2
• , -i2-1) + 1_um = min(=mE ''-I "=%=

FIF, NF _ = FIF, AF 2 U(l,r, str, num)

Figure l l: Efficient FALLS Intersection Algorithm Based on Periods

with another set of multiple FALLS can be done by intersecting each possible pair of FALLS

from the two sets (using the algorithm described above).

The conditions used for constructing the efficient FALLS intersection algorithm can also

be used to construct a boolean function BF_ NF 2 defined as:

TRUE if Fill _F_ ¢ 0BF'_F2 FALSE otherwise

In evaluating the function we use the parameters of the two FALLS. Intuitively, the func-

tion checks for the existence of at least one pair (il, i2) satisfying the intersection conditions.

Due to lack of space we are unable to present more details of this boolean function. As we

will see later, it plays an important role in computing PITFALLS intersection.

2.3 Processor Index Tagged FAmiLy of Line Segments (PIT-

FALLS)

Returning to the problem of redistribution, we can now see that a possible method could be

to first construct a FALLS representation for each source processor based on the source data

distribution and for each target processor based on the target data distribution. Next, we

could iterate over all source-target pairs and determine the data to be sent between them

using the FALLS intersection algorithm described above. However, this may not be very

efficient in many cases since there may" be many source-target processor pairs that do not

12
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SENDING PROCESSOR 0 {.._0.7.1.1)|

RECEIVING PROCE3$OR _(-(g,g. 16.2)}

INTERSECTION

BLOCKCYCLICI_2_

Figure 12: Example of Redistribution

communicate. Figure 12 shows a redistribution of a 32-element array from a BLOCK

distribution to a BLOCKCYCLIC(2) distribution. Here we assume there are 4 sending

processors and 8 receiving processors. If we consider the edges to represent communication,

we can see that there will be no communication, for instance, between processor 0 on the

sending end and processor 5 On the receiving end. In order to avoid this unnecessary iteration,

we extend the FALLS representation to what is called the PITFALLS representation. A

PITFALLS P is defined by a tuple (I, r, str, hum, disp, proc). "VVecan see that we have two

new parameters disp and proc as compared to the FALLS representation. Intuitively, a

PITFALLS represents a set of equally spaced FALLS for a set of proc processors with the

spacing between the l's of successive processor FALLS being disp. Formally, the pth FALLS

(0 <_ p <_ proc- l) of a PITFALLS P = (l, r, str, hUm, di.sp, proc) (denoted by F p and called

the pth member of P) is given by:

F p = (l + p x disp, r + p x disp, num, .str)

The advantage of using PITFALLS is that we do not use a separate set of FALLS for

each processor; instead, one set of PITFALLS is used for the entire set of processors across

which an array is distributed. The PITFALLS representation is parameterized by the IDs

of the processors. Thus, given an ID, we can determine the FALLS representation for the

associated processor. Examples of PITFALLS for a few regular distributions of a :]2 element

array are shown in Figure 13. It can be shown easily that no more than three PITFALLS

are needed to represent any regular distribution of an array.

As mentioned before, for redistribution, we are interested in being able to perform inter-

sections on our representation. The advantage of the PITFALLS representation is that it not

13



BLOCK

BLOCKCYCLIC(2)

FALLS

_0(0,W)

P1(8,[5,1,1)

I)2.(15,23,1,1)

P3(24,31,1,1)

PITFALLS

(0,7,1,1,8,4)

FALLS

P0(0,I,8,4)

PI(2,3,8,4)

P2(4,5,8,4)

P3(6,7,8,4)

PITFALLS

IIIllllltlllt/llll'fllllllllllllll

0 I 2 3 4 5 6 7 8 9 1011 1213141516171g19 202122 2324_ 262728_ 3031

L. -3
i"_. f!

disp

(0,1,8,4,2,4),_,

disp

Figure 13: Examples of PITFALLS
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for Pl = 0, procl - 1

Y pI = (11 -Jr- pl x displ,rl +Pl × displ,mlm.l, _trl)

for p_ = 0, proc2 -- 1

F p2 = (l_ + p2 x disp2, r2 + P2 × disp2, hum2, .str2)

if Bvpl ["]FV2 == true

compute Flva r'lFp2

Figure 14: PITFALLS Intersection Algorithm

only helps us perform efficient intersection of data sets for a pair of processors, but also helps

us determine which pair of processors will have a non-empty intersection. Consider a pair

of PITFALLS PI = (11, r_, strl, numl, disp_, procl) and P_ = (12, r2, sir2, num:, disp2, proc2).

We can now write down the FALLS representation for a pair of members (pl,P2) from the

two PITFALLS as:

F m = (11 + Pl x displ,rl + Pl x dispa,numl,S/rl)

F p2 = (12 + P2 x disp2, r2 + P2 x disp2, num2, str2)

'v¥_ have previously defined a boolean function to determine whether a pair of FALLS

will have a non-empty intersection. \_ can now use this function to determine whether the

pair of FALLS (F p' , F v_) will intersect. Hence, we can decide whether the pair of processors

(pt, p2) will need to communicate during redistribution. This is the basis for the PITFALLS

intersection algorithm shown in Figure 14.

2.4 Multi-dimensional Array Redistribution

Until this point we have only considered a one-dimensional case for all our representations

and algorithms. Extending these to the multi-dimensional case is trivial and can be done

by simply looking at the representations for each dimension and performing intersections

on them independently. An example of the two-dimensional case is provided in Figure 15.

Here, we show the FALLS representation for processor 1 of a 4 x 2 processor grid for two

given distributions. The first has the array distributed in a (BLOCK, CYCL[C) manner;

the second has it distributed in a (CYCLIC, BLOCKCYCL[C(4)) manner. We can see

that the FALLS representation for each dimension is independent of the others. Our multi-

dimensional FALLS intersection algorithm is shown in Figure 16.

After performing the dimension-by-dimension intersection, we can see that the set of
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m

CYCLIC DISTR[BU'I"[ON ON 2 P_OC'ESSt'_$

--: I I

BLOC_CYCLIC(4) D[STRIBUT[ON ON 2 PROCESSORS

Figure 1.5: Examples of FALLS for Multidimensional Arrays

for dim = O, Num.Dims

Frdim =
IF_im Fd'm

• _dirn dim]
d_m __ L2 --r 1,, -m x(O,i iI

• dim " dim dim _. __ dim
for _=[_ ,mm(I_ +rn 1 -1,..,,h -1)

_dim
LI -= (lf im -t- il × _qtrfirn,rl q- il × .str_ d_m)

r';'_-4'_l 14'"-'e_I m_m_for i_= max(0, ! ,**g,_ / )' min( / ,,,;,m j,

l= LOW(LIClL_)

r = HIGH(LI_tL2)

str = FP_imF_,.
_m_i"_-i_-I _m_im--12-_

hum = min( rr_fim , mdim ) + 1

f [FdlmFaim = F ]ffair_Fdim U( I, r, .str, nurn )

Figure 16: Multi-dimensional FALLS Intersection Algorithm
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(5,5,8,4) O (7,7,8,4)

Figure 17: Example of Multidimensional FALLS Intersection

resulting FALLS represent tile set of indices in each of the dimensions that need to be

transferred. Thus, during the transfer we have to consider rectangular sections of elements

by combining the sets of indices for all dimensions. This is made clear in the example of a

two-dimensional FALLS intersection shown in Figure 17. The source and target distributions

for this redistribution are assumed to be the ones shown in Figure 1.5. As we can see, the

intersection along the rows indicates all elements of row 0 are to be sent from source processor

1 to target processor 1. The intersection along the columns indicates all elements in columns

,5,7,13, 15, 21,23, 29, .31 are to be sent between these processors. ('ombining the two sets of

indices gives us the set of elements (0,,s), (0,7),(0, la),(0, (0,21), (0,ea), (0,29),(0,at).
Vv'e indicate these via the shaded areas.

Our multi-dimensional algorithm scales linearly with the number of dimensions involved.

This is a significant advantage over the methods of [:25].

A similar approach as the one above is used for the PITFALLS intersection in multiple

dimensions. We consider the PITFALLS representation for source and target processor sets

in each dimension and perform the PITFALLS intersection for that dimension using our

algorithm of Figure 14. Later, we combine the results of these intersections and obtain

rectangular sections of data that need to be transferred.

2.5 Multi-array Redistribution

For multiple arrays being redistributed from one processor set to another processor set, we

pack all the data to be transferred between a pair of processors for all the arrays into a single

buffer before sending its contents. This way, we ensure that no more than one message is

sent between processors even though they may communicate data for more than one array.
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The advantage is that we have one long message instead of multiple short messages.

2.6 Summary

To summarize, in this section we developed the idea of a representation for regular distri-

butions of a multi-dimensional array over a set of processors. We also provided an efficient

algorithm based on this representation to compute the data transfer required for a redistri-

bution. In the next section, we briefly discuss the implementation of our ideas in the context

of the PARADIGM compiler and provide the results of a comparison of our technique with

the runtime resolution method.

3 Implementation and Results

As mentioned earlier, the work proposed in this paper is aimed at supporting Multiple

Program-Multiple Data (MPMD) program generation in the PARADIGM compiler. Since

the PARADIGM compiler is still under design and implementation, we tested our methods

by automatically generating a set of functions for any given redistribution and executing

these functions on the Intel PARAGON and CM-5. In order to generate these functions, we

took at the source and target distributions of the array(s) being redistributed and generate

the PITFALLS representation for both. Based on these representations and our PITFALLS

intersection algorithm, we generate a pair of functions called GroupSend and GroupRecv to

be executed by each of the source and target processors respectively. For the purposes of

PITFALLS generation and intersection, we assume the processor subsystems are a contiguous

block; i.e., if there are p processors in a subsystem, we number them 0 through p - 1. We

call these the virtual IDs for the processors and provide structures in the GroupSend and

GroupRecv functions for any processor to determine its virtual ID based on its real ID.

When an actual SEND or RECV is performed by any processor, it needs to remap virtual

IDs to real IDs using the same structures. The structures basically specify the IDs of the

processors involved in the source and target processor sets. The idea behind having such

structures is very similar to the concepts of Groups, Contexts and Communicators described

in the MPI standard [20]. Due to the unavailability of reliable implementations of MPI on

the machines we test our methods on, we chose to use our own interface. However, we can

easily modify our code to use MPI when reliable implementations become available.

We generated and timed our algorithm for a total of 27 redistributions using all possible

combinations of:
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DS

BC(3),B

BC(3),BC(7)

B,A

Dt

C,BC(5)

BC(5),C

A,B

Size

128 x 128

256 × 256

512 × 512

128 x 128

256 x 256

512 x 512

128 x 128

256 x 256

512 x 512

4x4

2x6

3x5

4x4

2x6

3x5

4×4

2×6

3x5

5x2

3x6

4x5

5x2

3x6

4x5

5x2

3×6

4×5

8×1

16xl

I0×I

8xl

16xl

10×i

8xl

16xl

10xl

Naive(mS)

3 x 5 23.91

3 x 3 32.45

4 x 3 26.28

3 x 5 87.02

3 × 3 125.72

4 × 3 100.00

3 × 5 344.16

3 x 3 520.48

4 × 3 396.89

4 × 3 36.94

5 × 2 33.40

3 × 3 34.27

4 × 3 140.12

5 × 2 125.23

3 × 3 126.07

4 x 3 573.66

5 × 2 498.43

3 x 3 501.74

I × 16 29.62

1 x 16 21.77

I x 18 26.51

I × 16 109.51

I × 16 75.84

i × 18 95.49

1 x 16 441.90

i × 16 299.52

1 x 18 372.34

PITFALLS(mS) Speedup
10.98 2.18

11.30 2.87

10.75 2.45

35.70 2.44

44.64 2.81

40.20 2.49

130.92 2.63

168.56 3.08

149.38 2.66

16.56 2.23

2.5513.10

15.86

62.58

44.87

47.25

231.96

173.64

174.73

9.67

8.16

9.08

33.60

22.46

29.96

129.96

80.04

115.43

2.16

2.24

2.79

2.67

2.47

2.87

2.87

3.06

2.67

2.92

3.26

3.38

3.19

3.40

3.74

3.23

Table 1: Results on the Thinking Machines CM-5
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Size Ps

128x 128 4x4

2x6

3x5

256x256 4x4

2x6

3x5

512x512 4x4

2x6

3x5

128x i28 5x2

DS

BC(3),B

BC(3),BC(7)

B,A

Dt

C,BC(5)

BC(5),C

A,B

3×6

4x5

256x256 5x2

3×6

4×5

512×512 5×2

3×6

4x5

128×128 8× 1

16 x i

10xl

256×256 8x 1

16×I

iox I

512x512 8x 1

....16 xi 1

10x1 [1

P,
3x5

3x3

4x3

3x5

3×3

4×3

3×5

3×3

4×3

4x3

5×2

3x3

4×3

5x2

3x3

4x3

5×2

3x3

Ix16

Ix16

1x18

Naive(mS) PITFALLS(mS) Speedup

21.47 12.56 1.71

26.30 10.43 2.52

22.56 11.62 1.94

66.42 24.84 2.67

95.02 30.64 3.10

75.01 27.80 2.70

239.60

364.69

289.66

25.47

26.23

26.47

102.05

354.83

132.93

101.17

11.97

12.90
14.60

2.35

2.74
2.86

2.13

2.03

1.81

91.58 33.32 2.75

85.97 29.11 2.95

87.23 32.64 2.67

2.71130.67

109.84317.44 2.89

331.56 112.21 2.96

24.15 8.60 2.81

20.42 9.40 2.17

22.23 8.55 2.60

1 x 16 88.36 21.05 4.20
_1 x 16 67.71 18.63 3.63

1 x 18 74.38 19.28 3.86

1 × 16 336.76 75.30 4.47

x 16 232.57 60.47 3.85

× 18 286.82 62.83 4.56

Table 2: Results on the Intel Paragon
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[. 3 source-target distribution pairs:

(a) BC(3),B to C, BC(5)

(b) BC(3),BC(7) to BC(5),C

(c) B, AtoA, B

where, A = ALL, B = BLOCK, C = CYCLIC and BC(x) = BLOCKCYCLIC(,r).

2. 3 arrays sizes:

(a) 128 x 128

(b) 256 x 256

(c) 512 × 512

3. 3 processor grids chosen independently for each distribution pair (shown along with

the results in Tables I and 2).

The distributions and processor grids were chosen to show that our method can work

well for all of the regular distributions on arbitrary processor sets.

To evaluate the effectiveness of our algorithm, we also implemented a runt ime resolution

algorithm (referred to in Tables as Naive) and timed it for the same set of redistributions

(the details of such an algorithm were discussed in Section 1). The results of our study are

tabulated in Tables 1 and 2. From these, we can make the following observations:

Our algorithm performs better than the runtime resolution algorithm in all cases. In a

couple of cases for the smallest array, the performance improvement is not great; this

is attributed to the fact that elements being transferred between processors in these

cases are very scattered and not in clustered sections making addressing them very

expensive.

The performance improvement becomes more appreciable as the array size increases.

This means it is vital to use an efficient technique like ours for large array redistribu-

tions.

It was of interest to compare the per element cost for the two methods as a function

of array size for a particular redistribution. For this purpose, we selected the redistri-

bution in which our method performs closest to the runtime resolution method for the
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System

[ntel Paragon

Thinking Machines CM-5

Array Size Naive (p,5') PITFALLS (#S)
1.,15128 x 128 1.61

256 x 256 1.33 0.76

512 x 512 1.26 0.60

2.03 1.77

256 x 256- 1.91 1.04

512 x 512 1.90 0.78

128 x 128

Table 3: Comparison of Per Element Costs

smallest array. The values computed are tabulated in Table 3. From this table we can

see that the per element costs drop very rapidly for our method as compared to the

runtime resolution method. This indicates that the overhead factor of our meth.od is

very small for large arrays.

• The improvement seems to be independent of the underlying machine. Both machines

seem to show the same order of improvement.

4 Conclusions and Future Work

In this paper we have described a technique for carrying out array redistribution in an efficient

manner. Our technique relies on a simple yet effective representation (PITFALLS) for regular

distribution of arrays. This representation makes the communication analysis required for

redistribution very simple and efficient. The results we provide show that our method is

much superior to naive runtime resolution type of methods. The factor of improvement

achieved is higher for large array sizes, making it critical to use an efficient technique like

ours for redistribution.

We are currently exploring the possibility of using the PITFALLS representation for

general communication analysis in the PARADIGM compiler. We would also like to consider

redistribution of sections of an array and not the entire array. Such redistributions are

needed sometimes at procedure boundaries if the procedure called modifies only a section of

the input array. We are also going to undertake a more thorough analysis of the overheads

of our method and look into the possibility of reducing these overheads further.
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